Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 321, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556880

RESUMEN

Congenital infection caused by vertical transmission of microsporidia N. bombycis can result in severe economic losses in the silkworm-rearing industry. Whole-transcriptome analyses have revealed non-coding RNAs and their regulatory networks in N. bombycis infected embryos and larvae. However, transcriptomic changes in the microsporidia proliferation and host responses in congenitally infected embryos and larvae remains unclear. Here, we simultaneously compared the transcriptomes of N. bombycis and its host B. mori embryos of 5-day and larvae of 1-, 5- and 10-day during congenital infection. For the transcriptome of N. bombycis, a comparison of parasite expression patterns between congenital-infected embryos and larva showed most genes related to parasite central carbon metabolism were down-regulated in larvae during infection, whereas the majority of genes involved in parasite proliferation and growth were up-regulated. Interestingly, a large number of distinct or shared differentially expressed genes (DEGs) were revealed by the Venn diagram and heat map, many of them were connected to infection related factors such as Ricin B lectin, spore wall protein, polar tube protein, and polysaccharide deacetylase. For the transcriptome of B. mori infected with N. bombycis, beyond numerous DEGs related to DNA replication and repair, mRNA surveillance pathway, RNA transport, protein biosynthesis, and proteolysis, with the progression of infection, a large number of DEGs related to immune and infection pathways, including phagocytosis, apoptosis, TNF, Toll-like receptor, NF-kappa B, Fc epsilon RI, and some diseases, were successively identified. In contrast, most genes associated with the insulin signaling pathway, 2-oxacarboxylic acid metabolism, amino acid biosynthesis, and lipid metabolisms were up-regulated in larvae compared to those in embryos. Furthermore, dozens of distinct and three shared DEGs that were involved in the epigenetic regulations, such as polycomb, histone-lysine-specific demethylases, and histone-lysine-N-methyltransferases, were identified via the Venn diagram and heat maps. Notably, many DEGs of host and parasite associated with lipid-related metabolisms were verified by RT-qPCR. Taken together, simultaneous transcriptomic analyses of both host and parasite genes lead to a better understanding of changes in the microsporidia proliferation and host responses in embryos and larvae in N. bombycis congenital infection.


Asunto(s)
Bombyx , Nosema , Animales , Transcriptoma , Larva/genética , Larva/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Nosema/fisiología , Perfilación de la Expresión Génica , Proliferación Celular , Lípidos , Bombyx/genética
2.
Braz. j. biol ; 84: e249664, 2024. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1345558

RESUMEN

Abstract The impact of antibiotics on growth, cocoon production was assessed in addition to isolation and characterization of bacteria associated with silkworm gut of infected larvae. Larval rearing was maintained at recommended conditions of temperature and humidity. Silkworm larvae showing abnormal symptoms were collected from the control group and dissected for gut collection. Bacteria were isolated from the gut content by spreading on agar plates and incubated at 37 °C for 48 hrs. Bacterial identification and phylogenetic analysis were carried out by 16S rRNA gene sequencing. The isolated bacteria were subjected to antimicrobial susceptibility test (disc diffusion methods) by using Penicillin (10 µg/mL), Tetracycline (30 µg/mL), Amoxicillin (25 µg/mL), Ampicillin (10 µg/mL), and Erythromycin (15 µg/mL). All isolated strains showed positive results for the catalase test. We isolated and identified bacterial strains (n = 06) from the gut of healthy and diseased silkworm larvae. Based on the 16S rRNA gene sequence, isolated bacteria showed close relation with Serratia, Bacillus, and Pseudomonas spp. Notably, 83.3% of strains were resistant to Penicillin, Tetracycline, Amoxicillin, Ampicillin, and Erythromycin but 16.6% showed antibiotic susceptibility to the above-mentioned commonly used antibiotics. Silkworm larvae fed on penicillin-treated leaves showed significant improvement in larval weight, larval length, and cocoon production. Significantly higher larval weight (6.88g), larval length (5.84cm), and cocoon weight (1.33g) were recorded for larvae fed on leaves treated with penicillin as compared to other antibiotics. Isolated bacterial strains showed close relation with Serratia spp., Bacillus spp. and Pseudomonas spp.


Resumo O impacto dos antibióticos no crescimento e na produção do casulo foi avaliado, além do isolamento e caracterização das bactérias associadas ao intestino de larvas infectadas do bicho-da-seda. A criação das larvas foi mantida nas condições recomendadas de temperatura e umidade. As larvas do bicho-da-seda com sintomas anormais foram coletadas do grupo controle e dissecadas para coleta do intestino. As bactérias foram isoladas do conteúdo intestinal por espalhamento em placas de ágar e incubadas a 37° C durante 48 horas. A identificação bacteriana e a análise filogenética foram realizadas pelo sequenciamento do gene 16S rRNA. As bactérias isoladas foram submetidas a teste de sensibilidade antimicrobiana (métodos de difusão em disco) com penicilina (10 µg / mL), tetraciclina (30 µg / mL), amoxicilina (25 µg / mL), ampicilina (10 µg / mL) e eritromicina (15 µg / mL). Todas as cepas isoladas apresentaram resultados positivos para o teste da catalase. Isolamos e identificamos cepas bacterianas (n = 06) do intestino de larvas de bicho-da-seda saudáveis e doentes. Com base na sequência do gene 16S rRNA, as bactérias isoladas mostraram estreita relação com Serratia, Bacillus e Pseudomonas spp. Notavelmente, 83,3% das cepas eram resistentes a penicilina, tetraciclina, amoxicilina, ampicilina e eritromicina, mas 16,6% mostraram suscetibilidade aos antibióticos comumente usados mencionados acima. As larvas do bicho-da-seda alimentadas com folhas tratadas com penicilina apresentaram melhora significativa no peso larval, comprimento larval e produção de casulo. Peso larval significativamente maior (6,88g), comprimento larval (5,84cm) e peso do casulo (1,33g) foram registrados para larvas alimentadas com folhas tratadas com penicilina, em comparação com outros antibióticos. Cepas bacterianas isoladas mostraram estreita relação com Serratia spp., Bacillus spp. e Pseudomonas spp.


Asunto(s)
Animales , Bombyx , Antibacterianos/farmacología , Filogenia , Bacterias/genética , ARN Ribosómico 16S/genética , Pruebas de Sensibilidad Microbiana , Larva
3.
Braz. j. biol ; 842024.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469260

RESUMEN

Abstract The impact of antibiotics on growth, cocoon production was assessed in addition to isolation and characterization of bacteria associated with silkworm gut of infected larvae. Larval rearing was maintained at recommended conditions of temperature and humidity. Silkworm larvae showing abnormal symptoms were collected from the control group and dissected for gut collection. Bacteria were isolated from the gut content by spreading on agar plates and incubated at 37 °C for 48 hrs. Bacterial identification and phylogenetic analysis were carried out by 16S rRNA gene sequencing. The isolated bacteria were subjected to antimicrobial susceptibility test (disc diffusion methods) by using Penicillin (10 µg/mL), Tetracycline (30 µg/mL), Amoxicillin (25 µg/mL), Ampicillin (10 µg/mL), and Erythromycin (15 µg/mL). All isolated strains showed positive results for the catalase test. We isolated and identified bacterial strains (n = 06) from the gut of healthy and diseased silkworm larvae. Based on the 16S rRNA gene sequence, isolated bacteria showed close relation with Serratia, Bacillus, and Pseudomonas spp. Notably, 83.3% of strains were resistant to Penicillin, Tetracycline, Amoxicillin, Ampicillin, and Erythromycin but 16.6% showed antibiotic susceptibility to the above-mentioned commonly used antibiotics. Silkworm larvae fed on penicillin-treated leaves showed significant improvement in larval weight, larval length, and cocoon production. Significantly higher larval weight (6.88g), larval length (5.84cm), and cocoon weight (1.33g) were recorded for larvae fed on leaves treated with penicillin as compared to other antibiotics. Isolated bacterial strains showed close relation with Serratia spp., Bacillus spp. and Pseudomonas spp.


Resumo O impacto dos antibióticos no crescimento e na produção do casulo foi avaliado, além do isolamento e caracterização das bactérias associadas ao intestino de larvas infectadas do bicho-da-seda. A criação das larvas foi mantida nas condições recomendadas de temperatura e umidade. As larvas do bicho-da-seda com sintomas anormais foram coletadas do grupo controle e dissecadas para coleta do intestino. As bactérias foram isoladas do conteúdo intestinal por espalhamento em placas de ágar e incubadas a 37° C durante 48 horas. A identificação bacteriana e a análise filogenética foram realizadas pelo sequenciamento do gene 16S rRNA. As bactérias isoladas foram submetidas a teste de sensibilidade antimicrobiana (métodos de difusão em disco) com penicilina (10 µg / mL), tetraciclina (30 µg / mL), amoxicilina (25 µg / mL), ampicilina (10 µg / mL) e eritromicina (15 µg / mL). Todas as cepas isoladas apresentaram resultados positivos para o teste da catalase. Isolamos e identificamos cepas bacterianas (n = 06) do intestino de larvas de bicho-da-seda saudáveis e doentes. Com base na sequência do gene 16S rRNA, as bactérias isoladas mostraram estreita relação com Serratia, Bacillus e Pseudomonas spp. Notavelmente, 83,3% das cepas eram resistentes a penicilina, tetraciclina, amoxicilina, ampicilina e eritromicina, mas 16,6% mostraram suscetibilidade aos antibióticos comumente usados mencionados acima. As larvas do bicho-da-seda alimentadas com folhas tratadas com penicilina apresentaram melhora significativa no peso larval, comprimento larval e produção de casulo. Peso larval significativamente maior (6,88g), comprimento larval (5,84cm) e peso do casulo (1,33g) foram registrados para larvas alimentadas com folhas tratadas com penicilina, em comparação com outros antibióticos. Cepas bacterianas isoladas mostraram estreita relação com Serratia spp., Bacillus spp. e Pseudomonas spp.

4.
Adv Sci (Weinh) ; 10(28): e2302700, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37610511

RESUMEN

Multimodal therapy requires effective drug carriers that can deliver multiple drugs to specific locations in a controlled manner. Here, the study presents a novel nanoplatform constructed using zeolitic imidazolate framework-8 (ZIF-8), a nanoscale metal-organic framework nucleated under the mediation of silk fibroin (SF). The nanoplatform is modified with the newly discovered MCF-7 breast tumor-targeting peptide, AREYGTRFSLIGGYR (AR peptide). Indocyanine green (ICG) and doxorubicin (DOX) are loaded onto the nanoplatform with high drug encapsulation efficiency (>95%). ICG enables the resultant nanoparticles (NPs), called AR-ZS/ID-P, to release reactive oxygen species for photodynamic therapy (PDT) and heat for photothermal therapy (PTT) under near-infrared (NIR) irradiation, promoting NIR fluorescence and thermal imaging to guide DOX-induced chemotherapy. Additionally, the controlled release of both ICG and DOX at acidic tumor conditions due to the dissolution of ZIF-8 provides a drug-targeting mechanism in addition to the AR peptide. When intravenously injected, AR-ZS/ID-P NPs specifically target breast tumors and exhibit higher anticancer efficacy than other groups through ICG-enabled PDT and PTT and DOX-derived chemotherapy, without inducing side effects. The results demonstrate that AR-ZS/ID-P NPs are a promising multimodal theranostic nanoplatform with maximal therapeutic efficacy and minimal side effects for targeted and controllable drug delivery.

5.
Dev Comp Immunol ; 146: 104736, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37207976

RESUMEN

BmTsp.A (Bombyx mori Tetraspanin A) is one of the four transmembrane proteins which are capable to regulate multiple aspects of the immune response and are involved in various stages of viral invasion of the hosts. This study focused on the sequence features, analysis of expression pattern, as well as the effect of BmTsp.A on BmNPV (Bombyx mori nucleopolyhedrovirus) infection in the apoptotic pathway. BmTsp.A features the typical tetraspanins family, including four transmembrane domains and a major large extracellular loop domain. It is highly expressed specifically in the malpighian tubes, and its expression is increased by BmNPV induction for 48 h and 72 h. Overexpression and RNAi (RNA interference) mediated by siRNA reveal that BmTsp.A can promote the infection and replication of the virus. In addition, the overexpression of BmTsp.A regulates BmNPV-induced apoptosis, leading to changes in the expression of apoptosis-related genes and thus affecting viral proliferation. When subjected to stimulation by BmNPV infection, on the one hand, BmTsp.A inhibits Bmp53 through a Caspase-dependent pathway, which consequently promotes the expression of Bmbuffy, thereby activating BmICE to inhibit apoptosis and causing the promotion of viral proliferation. On the other hand, BmTsp.A inhibits the expression of BmPTEN and BmPkc through the phosphatidylinositol 3 kinase (PI3K)/protein kinaseB(AKT) signaling pathway, thus affecting the regulation of apoptosis. To summarize, our results demonstrate that BmTsp.A promotes viral infection and replication by inhibiting apoptosis, which is fundamental for understanding the pathogenesis of BmNPV and the immune defense mechanism of silkworm.


Asunto(s)
Bombyx , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Insectos/metabolismo , Apoptosis , Tetraspaninas/genética , Tetraspaninas/metabolismo
6.
Insects ; 14(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36975939

RESUMEN

Bombyx mori is an ideal lepidopteran species representative of many scientific studies, a model of studies for medicine and a significant insect from an ecological standpoint. This review was performed to summarize the fatty acids (FA) composition of silkworm pupae (SP) that are associated with other important compounds that could add value to SP, diversifying the ways of valorization. The proposal to complete plant-based feeds with insect-based feeds represents a viable option to beneficially impact human and animal health and the environment. The quality and quantity of fats consumed significantly impact the aetiology of certain diseases. The key compounds of fat named essential FA (EFA) substantially influence the prevention and treatment of several diseases through their nutraceutical functions. Due to its excellent profile in nutrients such as protein and fat, amino acids and fatty acids composition, SP has become an important alternative feed ingredient and source of EFA. SP is a by-product that was discarded in large quantities. Following the need to act to improve human health and reduce climate change impact, many researchers focused on studying SP applications in the medical and agricultural industries. Several authors noticed an improvement in the health markers by using SP. The feed cost for the animal was reduced with economic implications. Minimization of environmental impact was recorded. Few precautions were recommended regarding SP use, although they should not be ignored. The composition of SP and its potential for use in various industries provides us with persuasive arguments for continuing to develop the sericulture industry.

7.
Dev Comp Immunol ; 140: 104625, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36572165

RESUMEN

The reprogramming of host physiology has been considered an essential process for baculovirus propagation. Trehalose, the main sugar in insect blood, plays a crucial role as an instant energy source. Although the trehalose level is modulated following infection with Bombyx mori nucleopolyhedrovirus (BmNPV), the mechanism of trehalose metabolism in response to BmNPV infection is still unclear. In this study, we demonstrated that the trehalose level tended to be lower in BmNPV-infected hemolymph and higher in the midgut. The omics analysis revealed that two trehalose transporters, BmTret1-1 and BmTret1-2, and trehalase, BmTRE1 and BmTRE2, were differentially expressed in the midgut after BmNPV infection. BmTret1-1 and BmTret1-2 had the ability to transport trehalose into the cell and promoted cellular absorption of trehalose. Furthermore, the functions of BmTret1-1, BmTret1-2, BmTRE1 and BmTRE2 in BmNPV infection were analyzed. These genes were upregulated in the midgut after BmNPV infection. Virus amplification analysis revealed that these genes could promote BmNPV proliferation in BmN cells. In addition, these genes could promote the expression of BmPI3K, BmPDK1 and BmAkt and inhibit the expression of BmFoxO in the phosphoinositide 3-kinase (PI3K)-Akt signalling pathway. Similarly, the increased trehalose level in BmN cells could promote the expression of BmPI3K, BmPDK1 and BmAkt and inhibit the expression of BmFoxO. Taken together, BmNPV infection promote the expression of trehalose hydrolysis and transport-related genes. These changes affect the PI3K-Akt signalling pathway to facilitate BmNPV proliferation. These findings help clarify the relationship between trehalose metabolism and BmNPV infection.


Asunto(s)
Bombyx , Fosfatidilinositol 3-Quinasas , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Hidrólisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trehalosa/metabolismo , Proliferación Celular , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
8.
Genes (Basel) ; 15(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38254949

RESUMEN

The resistance of silkworms to Bombyx mori nuclear polyhedrosis virus (BmNPV) is controlled by a major dominant gene and multiple modifying genes. Given the presence of modified genes, it is difficult to determine the main gene by positional cloning. In this study, the main anti-BmNPV gene of BmNPV-resistant silkworm variety N was introduced into the susceptible variety Su to breed the near-isogenic line SuN with BmNPV resistance. The infection process of BmNPV in the hemolymph of Su and SuN was analyzed using the cell analysis system TissueFAXS PLUS. According to the law of infection and proliferation, hemolymph was extracted every 6 h for two-dimensional electrophoresis (2-DE) analysis and quantitative real-time polymerase chain reaction (qRT-PCR). Seven DEPs were found in comparisons between Su and SuN by 2-DE analysis. Among them, acid phosphatase, storage protein, and phenoloxidase can prevent pathogen invasion, which may play a role against BmNPV. Polyamine oxidase plays an important role in energy metabolism, which may be indirectly involved in the process of resisting BmNPV. Most of the transcriptional expression profiles of the seven DEPs were consistent with the 2-DE results. This study can provide a reference for the identification of anti-BmNPV genes and the breeding of BmNPV-resistant silkworm varieties.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Bombyx/genética , Nucleopoliedrovirus/genética , Proteómica , Genes Dominantes
9.
Polymers (Basel) ; 14(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36080741

RESUMEN

B. mori silkworm natural silk is a fibrous biopolymer with a block copolymer design containing both hydrophobic and hydrophilic regions. Using 1H NMR relaxation, this work studied B. mori natural silk fibres oriented at 0° and 90° to the static magnetic field B0 to clarify how measured NMR parameters reflect the structure and anisotropic properties of hydrated silk fibres. The FTIR method was applied to monitor the changes in the silk I and ß-sheet conformations. Unloaded B. mori silk fibres at different hydration levels (HL), the silk threads before and after tensile loading in water, and fibres after a stepped increase in temperature have been explored. NMR data discovered two components in T1 and T2 relaxations for both orientations of silk fibres (0° and 90°). For the slower T2 component, the results showed an obvious anisotropic effect with higher relaxation times for the silk fibres oriented at 90° to B0. The T1 component (water protons, HL = 0.11) was sequentially decreased over a range of fibres: 0° oriented, randomly oriented, silk B. mori cocoon, 90° oriented. The degree of anisotropy in T2 relaxation was decreasing with increasing HL. The T2 in silk threads oriented at 0° and 90° also showed anisotropy in increased HL (to 0.42 g H2O/g dry matter), at tensile loading, and at an increasing temperature towards 320 K. The changes in NMR parameters and different relaxation mechanisms affecting water molecular interactions and silk properties have been discussed. The findings provide new insights relating to the water anisotropy in hydrated Bombyx mori silk fibres at tensile loading and under a changing HL and temperature.

10.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35955502

RESUMEN

C-type lectins (CTLs) are widely distributed in mammals, insects, and plants, which act as pattern recognition receptors (PRRs) to recognize pathogens and initiate immune responses. In this study, we identified a C-type lectin gene called BmIML-2 from the silkworm Bombyx mori. Its open reading frame (ORF) encodes 314 amino acids, which contain dual tandem C-type lectin-like domain (CTLD). BmIML-2 is highly expressed in the fat body and is significantly induced at 24 h after BmNPV infection. Moreover, overexpression of BmIML-2 dramatically inhibited the proliferation of BmNPV, and knockdown assay via siRNA further validated the inhibition of BmIML-2 on viral proliferation. In addition, transcript level detection of apoptosis-related genes and observation of apoptosis bodies implied that overexpression of BmIML-2 promoted BmNPV-induced apoptosis. Immunofluorescence analysis indicated that BmIML-2 distributed throughout the cytoplasm and was slightly concentrated in the cell membrane. Taken together, our results suggest that BmIML-2 could inhibit in the proliferation of BmNPV by facilitating cell apoptosis.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Apoptosis , Bombyx/genética , Proliferación Celular , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Mamíferos/metabolismo , Nucleopoliedrovirus/genética
11.
J Biochem ; 172(1): 17-28, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35325141

RESUMEN

The pupae of lepidopterans contain high concentrations of endogenous d-serine. In the silkworm Bombyx mori, d-serine is negligible during the larval stage but increases markedly during the pupal stage, reaching 50% of the total free serine. However, the physiological function of d-serine and the enzyme responsible for its production is unknown. Herein, we identified a new type of pyridoxal 5'-phosphate (PLP)-dependent serine racemase (SR) that catalyses the racemization of l-serine to d-serine in B. mori. This silkworm SR (BmSR) has an N-terminal PLP-binding domain that is homologous to mammalian SR and a C-terminal putative ligand-binding regulatory-like domain (ACT-like domain) that is absent in mammalian SR. Similar to mammalian SRs, BmSR catalyses the racemization and dehydration of both serine isomers. However, BmSR is different from mammalian SRs as evidenced by its insensitivity to Mg2+/Ca2+ and Mg-ATP-which are required for activation of mammalian SRs-and high d-serine dehydration activity. At the pupal stage, the SR activity was predominantly detected in the fat body, which was consistent with the timing and localization of BmSR expression. The results are an important first step in elucidating the physiological significance of d-serine in lepidopterans.


Asunto(s)
Bombyx , Animales , Bombyx/genética , Bombyx/metabolismo , Deshidratación , Mamíferos , Pupa , Fosfato de Piridoxal/metabolismo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Serina/metabolismo
12.
J Fungi (Basel) ; 7(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34947032

RESUMEN

As microRNAs (miRNAs) are important expression regulators of coding RNA, it is important to characterize their role in the interaction between hosts and pathogens. To obtain a comprehensive understanding of the miRNA alternation in Bombyx mori (B. mori) infected with Nosema bombycis (N. bombycis), RNA sequencing and stem-loop qPCR were conducted to screen and identify the significantly differentially expressed miRNAs (DEmiRNAs). A total of 17 such miRNAs were identified in response to N. bombycis infection, among which miR6498-5p efficiently inhibited the proliferation of N. bombycis in BmE-SWU1 (BmE) cells by downregulating pyridoxal phosphate phosphatase 2 (BmPLPP2). In addition, a fluorescence in situ hybridization (FISH) assay showed that miR6498-5p was located in the cytoplasm of BmE cells, while it was not found in the schizonts of N. bombycis. Further investigation of the effect of BmPLPP2 on the proliferation of schizonts found that the positive factor BmPLPP2 could facilitate N. bombycis completing its life cycle in cells by overexpression and RNAi of BmPLPP2. Our findings offer multiple new insights into the role of miRNAs in the interaction between hosts and microsporidia.

13.
ACS Appl Mater Interfaces ; 13(40): 47371-47381, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34582680

RESUMEN

Silk fibroin (SF) is a biomacromolecule that can be assembled into nanostructures and induce biomimetic nucleation of inorganic materials. Zeolitic imidazolate framework-8 (ZIF-8), a metal-organic framework (MOF), can be dissolved selectively under acidic pH. Here, we integrated SF and ZIF-8 to develop novel drug carriers that selectively release drug in the acidic intracellular environment of cancer cells. Specifically, SF was assembled into nanoparticles (SF-NPs), which were then loaded with an antitumor drug, doxorubicin (DOX), to form DSF-NPs. Due to the SF-mediated organization of ZIF-8 precursors such as zinc ions, the DSF-NPs further templated the nucleation of ZIF-8 onto their surface to generate core-shell-structured NPs (termed DSF@Z-NPs) with ZIF-8 as a shell and DSF-NP as a core. We found that the DSF@Z-NPs, highly stable under neutral conditions, could be uptaken by breast cancer cells, release DOX selectively owing to dissolution of ZIF-8 shells in the acidic intracellular environment in a controlled manner, and induce cell apoptosis. We also confirmed that the DSF@Z-NPs could inhibit tumor growth more efficiently to reach a higher survival rate than their controls by inducing cell apoptosis in vivo. Our study suggests that SF and MOF could be combined to design a new type of cancer therapeutics.


Asunto(s)
Antineoplásicos/uso terapéutico , Portadores de Fármacos/química , Fibroínas/química , Estructuras Metalorgánicas/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Biomimética/métodos , Doxorrubicina/uso terapéutico , Femenino , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos
14.
Insects ; 12(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34442307

RESUMEN

ß-1,3-glucan recognition proteins (ßGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori ß-1,3-glucan recognition protein gene named BmßGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmßGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmßGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmßGRP4 in 5th instar larvae, while the overexpression of BmßGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmßGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmßGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmßGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmßGRP4 to escape host antiviral defense. Taken together, these results show that BmßGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.

15.
ACS Appl Mater Interfaces ; 13(26): 30420-30433, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34170674

RESUMEN

Tissue-mimetic silk hydrogels are being explored for diverse healthcare applications, including stem cell delivery. However, the impact of stress relaxation of silk hydrogels on human mesenchymal stem cell (MSC) biology is poorly defined. The aim of this study was to fabricate silk hydrogels with tuned mechanical properties that allowed the regulation of MSC biology in two dimensions. The silk content and stiffness of both elastic and viscoelastic silk hydrogels were kept constant to permit direct comparisons. Gene expression of IL-1ß, IL-6, LIF, BMP-6, BMP-7, and protein tyrosine phosphatase receptor type C were substantially higher in MSCs cultured on elastic hydrogels than those on viscoelastic hydrogels, whereas this pattern was reversed for insulin, HNF-1A, and SOX-2. Protein expression was also mechanosensitive and the elastic cultures showed strong activation of IL-1ß signaling in response to hydrogel mechanics. An elastic substrate also induced higher consumption of glucose and aspartate, coupled with a higher secretion of lactate, than was observed in MSCs grown on viscoelastic substrate. However, both silk hydrogels changed the magnitude of consumption of glucose, pyruvate, glutamine, and aspartate, and also metabolite secretion, resulting in an overall lower metabolic activity than that found in control cells. Together, these findings describe how stress relaxation impacts the overall biology of MSCs cultured on silk hydrogels.


Asunto(s)
Fibroínas/química , Hidrogeles/química , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Bombyx/química , Técnicas de Cultivo de Célula/métodos , Proliferación Celular/efectos de los fármacos , Módulo de Elasticidad , Expresión Génica/efectos de los fármacos , Humanos , ARN Mensajero/metabolismo , Sustancias Viscoelásticas/química
16.
Dev Comp Immunol ; 119: 104035, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33535067

RESUMEN

Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious pathogenic microorganism that causes tremendous loss to sericulture. Previous studies have found that some proteins of serine protease family in the digestive juice of B. mori larvae have anti-BmNPV activity. In our previous publication about proteome analysis of the digestive juice of B. mori larvae, the digestive enzyme trypsin, alkaline A (BmTA) was filtered as a differentially expressed protein possibly involved in BmNPV resistance. Here, the biological characteristics and anti-BmNPV functions of BmTA were comprehensively analysed. The cDNA sequence of BmTA had an ORF of 768 nucleotides encoding 255 amino acid residues. Domain architecture analysis showed that BmTA contained a signal peptide and a typical Tryp_SPc domain. Quantitative real-time PCR analysis showed that BmTA was highly expressed in the larval stages and specifically expressed in the midgut of B. mori larvae. The expression level of BmTA in BmNPV resistant strain A35 was higher than that in susceptible strain P50. After BmNPV infection, the expression of BmTA increased in both strains from 24 to 72 h. Virus amplification analysis showed that the relative levels of VP39 in B. mori larvae and BmN cells infected with the appropriate concentration of recombinant-BmTA-treated BmNPV were significantly lower than in the control groups. Moreover, overexpression of BmTA in BmN cells significantly inhibited the amplification of BmNPV. Taken together, the results of this study indicated that BmTA possessed anti-BmNPV activity in B. mori, which broadens the horizon for virus-resistant breeding of silkworms.


Asunto(s)
Bombyx/inmunología , Inmunidad Innata/inmunología , Proteínas de Insectos/inmunología , Nucleopoliedrovirus/inmunología , Tripsina/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Western Blotting , Bombyx/genética , Bombyx/virología , Línea Celular , Sistema Digestivo/inmunología , Sistema Digestivo/metabolismo , Sistema Digestivo/virología , Expresión Génica/inmunología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/genética , Larva/inmunología , Larva/virología , Nucleopoliedrovirus/fisiología , Filogenia , Proteolisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tripsina/clasificación , Tripsina/genética
17.
Front Microbiol ; 11: 1481, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695093

RESUMEN

Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen causing severe economic loss. However, the molecular mechanism of silkworm resistance to BmNPV and the interactions of this virus with the host during infection remain largely unclear. To explore the virus-binding proteins of silkworms, the midgut subcellular component proteins that may interact with BmNPV were analyzed in vitro based on one- and two-dimensional electrophoresis and far-western blotting combined with mass spectrometry (MS). A total of 24 proteins were determined to be specifically bound to budded viruses (BVs) in two subcellular fractions (mitochondria and microsomes). These proteins were involved in viral transportation, energy metabolism, apoptosis and viral propagation, and they responded to BmNPV infection with different expression profiles in different resistant strains. In particular, almost all the identified proteins were downregulated in the A35 strain following BmNPV infection. Interestingly, there were no virus-binding proteins identified in the cytosolic fraction of the silkworm midgut. Two candidate proteins, RACK1 and VDAC2, interacted with BVs, as determined with far-western blotting and reverse far-western blotting. We speculated that the proteins interacting with the virus could either enhance or inhibit the infection of the virus. The data provide comprehensive useful information for further research on the interaction of the host with BmNPV.

18.
J Insect Sci ; 20(3)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32556319

RESUMEN

Bombyx mori vitellogenin (BmVg) is highly upregulated during pupation, and the 20-hydroxyecdysone and amino acids may regulate stage-specific BmVg expression. However, previous studies showed that other factors may also affect stage-specific BmVg expression. Here, we characterized effective BmVg transcription factors by identifying the corresponding cis-regulatory elements (CREs). We prepared transgenic B. mori, in which DsRed was driven by various lengths of BmVg promoter. qRT-PCR analysis showed that DsRed expression driven by a 1.0-kb BmVg promoter (VgP1.0K) was consistent with endogenous BmVg. VgP1.0K specificity was closer to the endogenous BmVg promoter than that of VgP0.8K. These results suggest that CREs affecting stage-specific BmVg expression were localized to the 1.0-kb BmVg promoter. We investigated the effects of certain CREs that could influence the stage specificity of BmVg promoter on BmVg expression in transgenic B. mori. The relative DsRed expression was significantly reduced in transgenic female B. mori and the peak in DsRed expression was delayed after E-box CRE mutation. These results demonstrate that the E-box element enhanced BmVg expression and also affected stage-specific BmVg expression. Moreover, the relative DsRed expression was significantly increased in transgenic female of B. mori after 3×BD CRE mutation in BmVg promoter. However, the stage specificity of the mutated promoter was consistent with that of the endogenous BmVg promoter. The 3×BD element downregulated BmVg but had no effect on stage-specific BmVg expression. The present study promoted the process of elucidating the regulatory network for stage-specific BmVg expression and furnished a theoretical basis for the application of BmVg promoter.


Asunto(s)
Bombyx/genética , Expresión Génica/genética , Genes de Insecto , Proteínas de Insectos/genética , Elementos Reguladores de la Transcripción/genética , Factores de Transcripción/genética , Vitelogeninas/genética , Animales , Bombyx/metabolismo , Proteínas de Insectos/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Vitelogeninas/metabolismo
19.
Int J Mol Sci ; 20(18)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487808

RESUMEN

Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens of the silkworm. Cytochrome c (cytc) showed a significant response to BmNPV infection in our previous transcriptome study. However, little is known about the role of Bombyx mori cytc (Bmcytc) in resistance to BmNPV infection. In this study, the expression levels analysis of Bmcytc showed stable expression levels in selected tissues of the resistant strain AN following BmNPV infection, while there was downregulation in the susceptible strain p50, except in the malpighian tubule. To further study the role of Bmcytc in viral infection, Bmcytc was knocked down with siRNA in vitro, resulting in significant downregulation of selected downstream genes of the mitochondrial pathway, including Bmapaf, Bmcaspase-Nc, and Bmcaspase-1; this was also confirmed by overexpression of Bmcytc using the pIZT/V5-His-mCherry insect vector, except Bmcaspase-1. Moreover, knockdown of Bmcytc significantly promoted the infection process of BmNPV in vitro, while the infection was inhibited by overexpression of Bmcytc at the early stage and subsequently increased rapidly. Based on these results, we concluded that Bmcytc plays a vital role in BmNPV infection by regulating the mitochondrial apoptosis pathway. Our work provides valuable data for the clarification of the mechanism of silkworm resistance to BmNPV infection.


Asunto(s)
Bombyx/genética , Resistencia a la Enfermedad/genética , Proteínas de Insectos/genética , Animales , Apoptosis , Bombyx/inmunología , Bombyx/virología , Caspasas/genética , Caspasas/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Proteínas de Insectos/metabolismo , Nucleopoliedrovirus/patogenicidad
20.
Mater Sci Eng C Mater Biol Appl ; 104: 110003, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31500012

RESUMEN

Hemostatic materials could reduce avertible death from bleeding during surgery and emergency treatment. To this end, silk fibroin (SF) loaded with Ca2+ (1.8, 3.6 5.4, or 7.2%, w:w) was tested as a new hemostatic material (designated as SF1.8, SF3.6, SF5.4, or SF7.2), and the Ca2+ release rate, platelet adhesion, blood coagulation, cytocompatibility, and antimicrobial properties were investigated. Platelet adhesion on SF1.8 was improved significantly compared with pure SF porous material, and increased with increasing Ca2+ concentration. For SF3.6, platelet adhesion was greater than observed for gelatin and calcium alginate porous materials, clotting occurred earlier, and the complete coagulation time was shorter. Additionally, rabbit ear wound studies revealed that the hemostatic time for SF3.6 was significantly shorter than for gelatin, and similar to that for calcium alginate. The shed blood weight was lowest when SF was loaded with 7.2% Ca2+. The SF3.6 porous material displayed no obvious cytotoxicity, and exhibited satisfactory antibacterial activity against Escherichia coli and Staphylococcus aureus.


Asunto(s)
Alginatos/química , Materiales Biocompatibles/química , Calcio/metabolismo , Fibroínas/química , Seda/química , Animales , Antibacterianos/química , Plaquetas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Gelatina/metabolismo , Hemostáticos/metabolismo , Porosidad/efectos de los fármacos , Conejos , Staphylococcus aureus/efectos de los fármacos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...